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Calculation of heat transfer in Ranque–Hilcsh’s vortex tube‡
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SUMMARY

This paper describes problems of calculation of hydrodynamics and heat transfer in vortex tube for
International Journal for Numerical Methods in Fluids. The Ranque e�ect has been known since
1931. The existence of the e�ect is proved by multiple experiments, but there is no strict physical
explanation of the e�ect and there are more than ten hypotheses. Our calculations show that there is
no need to use any additional hypothesis to explain the e�ect, but it is necessary to solve the di�cult
problem of hydrodynamics of compressible gas in complex geometry. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Vortex e�ect or Ranque’s e�ect [1, 2] is very well-known phenomenon. It consists in the
separation of a rotated gas �ux into two parts. One of the �uxes has a temperature that is
higher than the entering �ux temperature, the other has a lower one. Almost all research
done in the area is experimental [3, 4]. At the moment we know several numerical works,
devoted to the e�ect, but amount of dependencies obtained in References [5, 6] is not large.
The researchers in laboratories tune the tube using empirical data and intuition [1–4, 7, 8].
By means of mathematical calculation the e�ect was calculated in Reference [9]. In that
work compressibility of the media was taken into account only in the equation of heat trans-
fer. This article is continuation of computational experiments of Reference [9]. Solutions
were obtained from full Navier–Stokes’ equations with viscosity and temperature conductiv-
ity dependence on temperature taken into account. Calculations were carried out in natural
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variables on a non-uniform mesh until stationary solutions were obtained. Dependencies of
the temperature separation e�ect on di�erent parameters of the vortex tube were obtained
and, thus, any doubts about the possibility to describe the e�ect by gas dynamics were
removed.

2. PROBLEM DEFINITION AND SOLUTION PROCEDURE

A vortex cylindrical tube has two outlets. Gas enters the tube usually through by one or
two nozzles, placed on the side area of the tube at some angle (so-called angle of inclina-
tion). In Figure 1 a countercurrent vortex tube with two rectangular nozzles is presented. In
Figure 1 a shortened tube is shown (usually its length is more than 10 diameters). Compressed
air creates a �ux with high velocity comparable to the sound speed. The �ux has an intense
rotated �ow form. Heated gas goes out of the peripheral annular exit on the opposite side of
the tube, and cooled gas is picked at the diaphragm. The diaphragm can be placed on the end
of the tube near the nozzles (countercurrent tube) and near the hot exit (direct-�ow tube).
Flow discharges are adjusted by the throttle, which allows to change the size of the out�ow
face. The e�ects of heating and cooling are estimated by average temperature in the entering
and outgoing �uxes.
Equations of compressible gas were solved for axially symmetric laminar �ow of the ideal

gas. The dependencies of viscosity and heat conductivity on temperature were taken into
account and viscous dissipation was inserted in energy equation. The equations to be solved

Cooled gas
from axial zone

Hot gas from
peripherical zone

Gas inlet

Figure 1. Countercurrent tube.
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were as follows [10, 11]:
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Here V =(Vr; Vz; V’)—velocity vector, �—density, T—temperature, �—viscosity, �=Cp=CV ,
�—dissipation function.
The assumption about the axial symmetry of the �ow makes a three dimensional �ux

two-dimensional, and thus decreases the amount of computations to feasible. However, we
must note, that the experiments [8] distinctly showed that the �ow in the tube was not
stationary and its vortex structure was not symmetric. In solving this problem we account
turbulence by depreciating Reynolds’ number (the usage of more accurate turbulent model will
be our further research). According to Reference [12], the recommended depreciated Reynolds
number equal to 406 has been used. The equations were converted to a non-dimensional form
with the following similarity criteria—Reynolds number Re, Mach number M and Prandtl
number Pr. The dependence of non-dimensional viscosity on temperature was approximated by
Sutherland’s formula [11]. A similar dependence was used for the heat conductivity coe�cient.
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Figure 2. Calculation area with boundary indication and its fragmentation to subareas.

α

Figure 3. Distribution of entering �ux on side area.

The calculation area is represented in Figure 2. At the transition to axially symmetric problem
we assumed that the full �ux through the inlet should be distributed on the belt EF on the
cylindrical surface of the tube. Thus, the velocity of gas on the section of the belt EF must
have the radial component connected with full content Q=V0Fc through the nozzle by the
ratio Vr =F=F1, F—nozzle sectional area, F1—belt surface area. In dimensionless form we
have

EF : Vr =− sin � cos�; V’= cos � cos�; Vz= sin �; T =1; �=1

Here � is the angle of ‘inclination’ of the entering �ux (Figure 3) and � is the degree
of the entering �ux rotation. At the outlets we used the following conditions [13] (excluding
density):
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@2Vr
@z2

= 0;
@2V’
@z2

= 0;
@2Vz
@z2

= 0;
@2T
@z2

= 0; �=
1

�PT

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:107–113



CALCULATION OF HEAT TRANSFER 111

Here �P is assigned pressure drop (the ratio of pressure at the inlet to that at the outlet of
the vortex tube). Let us note, that we assume the equality of pressures at the outlets of the
vortex tube in order to decrease of parameters number. On the solid boundaries it is assumed:
V =0, @T=@n=0, @�=@n=0. Such assignment of boundary conditions for the temperature on
the tube solid boundaries corresponds to so-called ‘adiabatic’ vortex tube [7]. On the axis
the symmetry condition is applied. Problem solving starts from applying initial conditions and
problem parameters. Inside the calculation area homogeneous initial conditions are applied for
velocity components and temperature V =0, T =1 and the initial distribution of density �eld
is obtained from the mixed problem for Laplace equation inside the area:

��=0; G :
@�
@n
=0; EF : �=1; AB; GH : �=

1
�P

Here G is a solid part of the tube. Such distribution for density forms a �ux that is close
to real. The problem was solved by a �nite di�erences method. We used an explicit scheme
with upwind approximation (for convective components) [13, 14]. In evolutionary equations
we lifted all the components that could perfect the stability of the scheme to the upper
(n+ 1)th layer. We used a nonuniform mesh to be able to decrease computational viscosity
and to continuously change the geometrical parameters. Equations were iterated to stationary
state. For example, the discrepancy of the values dropped ten times by 5000 iteration for
13000 mesh points.

3. COMPUTATIONAL RESULTS

The main results were obtained for the following set of parameters Re=150–450, �=1:4,
�=0:05–0.20, �=�=5, M =0:8–1.0, R1 = 0:2–0.5, R2 = 0:7–0.8, �P=2, L1 = 0:5, L2 = 0:7,
L3 = 1:0, L4 = 2:5–4.2, L5 = 2:8–4.5. One of the most important parameter in the above list
is assigned pressure drop �P. We have to show the relation of this parameters to the real
pressure drop. It is natural to assume, that rest gas transforms to the entering �ux with assigned
velocity V0 by adiabatic process. It makes the full pressure drop equal to:

k̃=
p0
pent

=
p0
p1
�P=

(
1 +

�− 1
2
M 2

)
�P

This formula shows that at the Mach number equal to 0:8 and �=1:4 the real value of drop
pressure is 1:5024 times more than that assigned in the list of parameters. Flow lines are
shown in Figure 4. The axis are marked by mesh points. The main feature of the �ow is the
vortex zone of the recurrent �ow, the existence of which was doubted in many papers [3].
The estimation of the values shows, that numerical viscosity is not low. The decrease in the
numerical viscosity (Reynolds number Reh¡1) can be achieved only by noticeable increase of
computational time. The dependence of the temperatures di�erence on the Reynolds number
is shown in Figure 5. The maximum temperature di�erence varied from 0:35 to 1:01 (in
dimension form it is about 100 and 270◦).
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Figure 4. Flow lines.

Figure 5. Dependence of stagnation temperature T∗ on Reynolds number Re.

4. CONCLUSIONS

The in�uence of problem parameters and geometrical parameters on calculating values has
been studied. The dependencies of the main characteristics have been obtained on di�erent
parameters of the tube (length of the tube, inclination angle of entering �ux, degree of rotation
of entering �ux, Reynolds and Mach numbers, radii of diaphragm and throttle and etc.). The
main result is that we can describe the process in the vortex tube by ordinary gas dynamics
without using any additional hypothesis.
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